The effects of nanobubbles on the assembly of glucagon amyloid fibrils
PUBLICATION: SOFT MATTER
AUTHORS: Wang, YJ; Guo, Z; Tan, TY; Ji, YW; Hu, J; Zhang, Y
ABSTRACT
Some recent studies have shown that the surface and interface play an important role in the assembly and aggregation of amyloid proteins. However, it is unclear how the gas-liquid interface affects the protein assembly at the nanometer scale although the presence of gas-liquid interfaces is very common in in vitro experiments. Nanobubbles have a large specific surface area, which provides a stage for interactions with various proteins and peptides on the nanometer scale. In this work, nanobubbles produced in solution were employed for studying the effects of the gas-liquid interface on the assembly of glucagon proteins. Atomic force microscopy (AFM) studies showed that nanobubble-treated glucagon solution formed fibrils with an apparent height of 4.02 +/- 0.71 nm, in contrast to the fibrils formed with a height of 2.14 +/- 0.53 nm in the control. Transmission electron microscopy (TEM) results also showed that nanobubbles promoted the assembly of glucagon to form more fibrils. Thioflavin T (ThT) fluorescence and Fourier transform infrared (FTIR) analyses indicated that the nanobubbles induced the change of the glucagon conformation to a beta-sheet structure. A mechanism that explains how nanobubbles affect the assembly of glucagon amyloid fibrils was proposed based on the above-mentioned experimental results. Given the fact that there are a considerable amount of nanobubbles existing in protein solutions, our results indicate that nanobubbles should be considered for fully understanding the protein aggregation events in vitro.
Attachments